DEFINITIONS AND THEOREMS TO MEMORIZE FOR THE FINAL

DEFINITIONS

Definitions of Eigenvalue and Eigenvector

Let A be an $n \times n$ matrix. The scalar λ is called an **eigenvalue** of A when there is a *nonzero* vector \mathbf{x} such that $A\mathbf{x} = \lambda \mathbf{x}$. The vector \mathbf{x} is called an **eigenvector** of A corresponding to λ .

Definition of a Diagonalizable Matrix

An $n \times n$ matrix A is **diagonalizable** when A is similar to a diagonal matrix. That is, A is diagonalizable when there exists an invertible matrix P such that $P^{-1}AP$ is a diagonal matrix.

Definition of Symmetric Matrix

A square matrix A is symmetric when it is equal to its transpose: $A = A^{T}$.

THEOREMS

Theorem 7.2: Eigenvalues and Eigenvectors of a Matrix Let A be an $n \times n$ matrix.

- 1. An eigenvalue of A is a scalar λ such that det $(\lambda I A) = 0$. W
- 2. The eigenvectors of *A* corresponding to λ are the nonzero solutions of $(\lambda I A)\mathbf{x} = \mathbf{0}$ is called an **eigenvector** of *A* corresponding to λ .

Theorem 7.3: Eigenvalues of Triangular Matrices

If A is an $n \times n$ triangular matrix, then its eigenvalues are the entries on its main diagonal.