$\mathcal{F} I \mathcal{N} \mathcal{A L}$
 $\underline{\mathcal{D E F I N} I \mathcal{T} I O \mathcal{N} S}$

Definitions of Eigenvalue and Eigenvector
Let A be an $n \times n$ matrix. The scalar λ is called an eigenvalue of A when there is a nonzero vector \mathbf{x} such that $A \mathbf{x}=\lambda \mathbf{x}$. The vector \mathbf{x} is called an eigenvector of A corresponding to λ.

Definition of a Diagonalizable Matrix
$\mathcal{A n} n \times n$ matrix A is diagonalizable when A is similar to a diagonalmatrix. That is, A is diagonalizable when there exists an invertigle matrix P such that $P^{-1} A P$ is a diagonal matrix.

Definition of Symmetric Matrix
\mathcal{A} square matrix A is symmetric when it is equal to its transpose: $A=A^{T}$.

$\underline{\mathcal{T H E O} \mathcal{R E M S}}$

The orem 7.2: Eigenvalues and Eigenvectors of a Matrix
Let A be an $n \times n$ matrix.

1. An eigenvalue of A is a scalar λ such that $\operatorname{det}(\lambda I-A)=0 . \mathcal{W}$
2. The eigenvectors of A corresponding to λ are the nonzero solutions of $(\lambda I-A) \mathbf{x}=\mathbf{0}$ is called an eigenvector of A corresponding to λ.

The orem 7.3: Eigenvalues of Triangular Matrices

If A is an $n \times n$ triangular matrix, then its eigenvalues are the entries on its main diagonal.

